Цифровые 3D-файлы изменили способ работы инженеров с производителями. Теперь инженеры могут спроектировать деталь с помощью программного обеспечения CAD, отправить цифровой файл производителю и попросить производителя изготовить деталь непосредственно по файлу, используя цифровые технологии производства, например, обработку на станках с ЧПУ.
Но хотя цифровые файлы ускорили и упростили производство, они не заменили искусство черчения, то есть создание подробных, аннотированных инженерных чертежей. Эти двухмерные чертежи могут показаться устаревшими по сравнению с CAD, но они по-прежнему являются важным способом предоставления информации о конструкции детали - особенно информации, которую нелегко передать в файле CAD.
В этой статье рассматриваются основы 2D-чертежей в машиностроении: что это такое, как они работают по сравнению с цифровыми 3D-моделями, и почему их все еще следует предоставлять производственной компании вместе с файлом CAD.
В мире машиностроения двухмерный чертеж или инженерный чертеж - это тип технического чертежа, который передает информацию о детали, такую как ее геометрия, размеры и допустимые допуски.
В отличие от цифрового файла CAD, который представляет неизготовленную деталь в трех измерениях, инженерный чертеж представляет деталь в двух измерениях. Но эти двухмерные виды - лишь одна из особенностей двухмерного технического чертежа. Помимо геометрии детали, чертеж содержит количественную информацию, такую как размеры и допуски, и качественную информацию, такую как назначение материалов детали и отделка поверхности.
Как правило, конструктор или инженер представляет набор двухмерных чертежей, каждый из которых показывает деталь с разных сторон или под разным углом. (Некоторые 2D-чертежи представляют собой детальные виды отдельных элементов.) Связь между различными чертежами обычно объясняется с помощью сборочного чертежа. Стандартные виды включают:
Традиционно двухмерные чертежи выполнялись вручную с использованием чертежного оборудования, т.е. чертежного стола, карандаша и циркуля. Но сегодня 2D-чертежи можно создавать и с помощью программного обеспечения CAD. Одним из популярных приложений является Autodesk AutoCAD - программа для создания 2D-чертежей, которая приближена к процессу ручного черчения. Кроме того, можно автоматически генерировать 2D-чертежи из 3D-моделей с помощью таких распространенных программ САПР, как SolidWorks или Autodesk Inventor.
Поскольку цифровые 3D-модели передают форму и размеры детали, может показаться, что необходимость в 2D-чертежах отпала. В определенном смысле это действительно так: инженер может спроектировать деталь с помощью программного обеспечения CAD, и этот же цифровой файл может быть отправлен на станок для производства, причем никто даже не возьмет в руки карандаш.
Однако многие производители предпочитают получать 2D-чертежи вместе с файлами CAD при изготовлении деталей для заказчика. 2D-чертежи соответствуют универсальным стандартам. Их легко читать, с ними можно работать в различных условиях (в отличие от экрана компьютера), на них можно четко выделить критические размеры и допуски. Одним словом, производители по-прежнему говорят на языке двухмерных технических чертежей.
Конечно, цифровые 3D-модели могут выполнять большую часть тяжелой работы, и 2D-чертежи становятся менее необходимыми, чем раньше. Но это хорошо, поскольку позволяет инженерам использовать 2D-чертежи в основном для передачи наиболее важной или нестандартной информации: спецификаций, которые могут быть не сразу понятны из файла CAD.
В целом, 2D-чертежи следует использовать в дополнение к CAD-файлу. Создавая оба варианта, вы даете производителям наиболее четкое представление о ваших требованиях, снижая вероятность недопонимания.
Существует несколько причин, по которым двухмерные чертежи остаются важной частью производственного процесса. Вот лишь некоторые из них:
Советуем вам прочитать статьи опубликованные в нашем блоге ранее: «Почему каждый инженер должен использовать САПР?» и «Удивительный набор инструментов созданный Генри О. Стадли».
Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!
Оптоволоконный станок для резки металла XTC-1530H/2000 Raycus
Рабочая зона 1500х3000 мм. Источник 2000 Вт Raycus. Резка нержавеющей стали до 8 мм, углеродистой стали до 16 мм.
Лазерный гравировальный станок с ЧПУ LM 2030 PRO OPEN 180W
Рабочий стол 2000х3000 мм. Мощность трубки 180 Вт. Ресурс 10 000 моточасов. Потребляемая мощность 6 кВт. Вес 1300 кг
Лазерно-гравировальная машина с ЧПУ LM 9060 PRO 100W
Рабочий стол 900х600 мм. Мощность трубки 100 Вт. Ресурс 10 000 моточасов. Потребляемая мощность 1,5 кВт. Вес 340 кг
Калькулятор расчета расхода газа для лазерной резки металла Артем А не подскажите какое необходимо давление азота на 3Квт...
Что такое отжиг? [7 видов процесса отжига] Василий Статья понравилась, много нового узнала Спасибо! Рад...
Три уровня мастерства: линии поддонов для разного масштаба Олег Встречно могу предложить лесопильные линии и линии...
Запуск оптоволоконного лазерного станка LF3015GA/4000 IPG в Алатыре Антон Здравствуйте, телефон менеджера по продаже...
Мощь и статус: лазерные станки, о которых мечтает каждый Андрей Очень интересно
Плазменный станок с ЧПУ — своими руками Михаил Для того что б делать подобные вещи нужно образование 9...
Мне кажется что много информации еще не оцифровано. И приходится работать по старым гостам где как раз и изображены старые 2д чертежи. Дело только в этом как мне кажется.
Мне кажется сейчас не проблема оцифровать любые госты и чертежи. Думаю сейчас их много уже в сети и на каждое производство уже есть.