Цифровые 3D-файлы изменили способ работы инженеров с производителями. Теперь инженеры могут спроектировать деталь с помощью программного обеспечения CAD, отправить цифровой файл производителю и попросить производителя изготовить деталь непосредственно по файлу, используя цифровые технологии производства, например, обработку на станках с ЧПУ.
Но хотя цифровые файлы ускорили и упростили производство, они не заменили искусство черчения, то есть создание подробных, аннотированных инженерных чертежей. Эти двухмерные чертежи могут показаться устаревшими по сравнению с CAD, но они по-прежнему являются важным способом предоставления информации о конструкции детали - особенно информации, которую нелегко передать в файле CAD.
В этой статье рассматриваются основы 2D-чертежей в машиностроении: что это такое, как они работают по сравнению с цифровыми 3D-моделями, и почему их все еще следует предоставлять производственной компании вместе с файлом CAD.
В мире машиностроения двухмерный чертеж или инженерный чертеж - это тип технического чертежа, который передает информацию о детали, такую как ее геометрия, размеры и допустимые допуски.
В отличие от цифрового файла CAD, который представляет неизготовленную деталь в трех измерениях, инженерный чертеж представляет деталь в двух измерениях. Но эти двухмерные виды - лишь одна из особенностей двухмерного технического чертежа. Помимо геометрии детали, чертеж содержит количественную информацию, такую как размеры и допуски, и качественную информацию, такую как назначение материалов детали и отделка поверхности.
Как правило, конструктор или инженер представляет набор двухмерных чертежей, каждый из которых показывает деталь с разных сторон или под разным углом. (Некоторые 2D-чертежи представляют собой детальные виды отдельных элементов.) Связь между различными чертежами обычно объясняется с помощью сборочного чертежа. Стандартные виды включают:
Традиционно двухмерные чертежи выполнялись вручную с использованием чертежного оборудования, т.е. чертежного стола, карандаша и циркуля. Но сегодня 2D-чертежи можно создавать и с помощью программного обеспечения CAD. Одним из популярных приложений является Autodesk AutoCAD - программа для создания 2D-чертежей, которая приближена к процессу ручного черчения. Кроме того, можно автоматически генерировать 2D-чертежи из 3D-моделей с помощью таких распространенных программ САПР, как SolidWorks или Autodesk Inventor.
Поскольку цифровые 3D-модели передают форму и размеры детали, может показаться, что необходимость в 2D-чертежах отпала. В определенном смысле это действительно так: инженер может спроектировать деталь с помощью программного обеспечения CAD, и этот же цифровой файл может быть отправлен на станок для производства, причем никто даже не возьмет в руки карандаш.
Однако многие производители предпочитают получать 2D-чертежи вместе с файлами CAD при изготовлении деталей для заказчика. 2D-чертежи соответствуют универсальным стандартам. Их легко читать, с ними можно работать в различных условиях (в отличие от экрана компьютера), на них можно четко выделить критические размеры и допуски. Одним словом, производители по-прежнему говорят на языке двухмерных технических чертежей.
Конечно, цифровые 3D-модели могут выполнять большую часть тяжелой работы, и 2D-чертежи становятся менее необходимыми, чем раньше. Но это хорошо, поскольку позволяет инженерам использовать 2D-чертежи в основном для передачи наиболее важной или нестандартной информации: спецификаций, которые могут быть не сразу понятны из файла CAD.
В целом, 2D-чертежи следует использовать в дополнение к CAD-файлу. Создавая оба варианта, вы даете производителям наиболее четкое представление о ваших требованиях, снижая вероятность недопонимания.
Существует несколько причин, по которым двухмерные чертежи остаются важной частью производственного процесса. Вот лишь некоторые из них:
Советуем вам прочитать статьи опубликованные в нашем блоге ранее: «Почему каждый инженер должен использовать САПР?» и «Удивительный набор инструментов созданный Генри О. Стадли».
Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!
Оптоволоконный станок для резки металла XTC-1530H/2000 Raycus
Рабочая зона 1500х3000 мм. Источник 2000 Вт Raycus. Резка нержавеющей стали до 8 мм, углеродистой стали до 16 мм.
Лазерный гравировальный станок с ЧПУ LM 2030 PRO OPEN 180W
Рабочий стол 2000х3000 мм. Мощность трубки 180 Вт. Ресурс 10 000 моточасов. Потребляемая мощность 6 кВт. Вес 1300 кг
Лазерно-гравировальная машина с ЧПУ LM 9060 PRO 100W
Рабочий стол 900х600 мм. Мощность трубки 100 Вт. Ресурс 10 000 моточасов. Потребляемая мощность 1,5 кВт. Вес 340 кг
Лазерная очистка металла: принцип, характеристики и применение Алексей Доброго времени суток. Настройки оборудования...
Лазерная, гидроабразивная или плазменная резка: что лучше? Антон Здравствуйте! Уточняем, что данная статья является...
Калькулятор расчета расхода газа для лазерной резки металла Алексей 16-20 бар
Станок для изготовления пружин и гибки проволоки [чертежи прилагаются] Михаил cncjs как зациклить программу загиба пружины, что бы не...
Виды лазеров: 4 метода классификации Василий Было интересно...
Что такое отжиг? [7 видов процесса отжига] Василий Статья понравилась, много нового узнала Спасибо! Рад...
Мне кажется что много информации еще не оцифровано. И приходится работать по старым гостам где как раз и изображены старые 2д чертежи. Дело только в этом как мне кажется.
Мне кажется сейчас не проблема оцифровать любые госты и чертежи. Думаю сейчас их много уже в сети и на каждое производство уже есть.